An ephrin mimetic peptide that selectively targets the EphA2 receptor.

نویسندگان

  • Mitchell Koolpe
  • Monique Dail
  • Elena B Pasquale
چکیده

Eph receptor tyrosine kinases represent promising disease targets because they are differentially expressed in pathologic versus normal tissues. The EphA2 receptor is up-regulated in transformed cells and tumor vasculature where it likely contributes to cancer pathogenesis. To exploit EphA2 as a therapeutic target, we used phage display to identify two related peptides that bind selectively to EphA2 with high affinity (submicromolar K(D) values). The peptides target the ligand-binding domain of EphA2 and compete with ephrin ligands for binding. Remarkably, one of the peptides has ephrin-like activity in that it stimulates EphA2 tyrosine phosphorylation and signaling. Furthermore, this peptide can deliver phage particles to endothelial and tumor cells expressing EphA2. In contrast, peptides corresponding to receptor-interacting portions of ephrin ligands bind weakly and promiscuously to many Eph receptors. Bioactive ephrin mimetic peptides could be used to selectively deliver agents to Eph receptor-expressing tissues and modify Eph signaling in therapies for cancer, pathological angiogenesis, and nerve regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand Targeting of EphA2 Enhances Keratinocyte Adhesion and Differentiation via Desmoglein 1

EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for da...

متن کامل

Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors.

The erythropoietin-producing hepatocellular (Eph) family of receptor tyrosine kinases regulates a multitude of physiological and pathological processes. Despite the numerous possible research and therapeutic applications of agents capable of modulating Eph receptor function, no small molecule inhibitors targeting the extracellular domain of these receptors have been identified. We have performe...

متن کامل

Engineered Fibrin Matrices with Ephrin Mimetic Peptides for the Induction of Angiogenic Signalling

Introduction Eph receptor tyrosine kinases and ligands are trans-membrane or membrane bound cell-cell communication molecules that play key roles from embryonic development to adult tissue homeostasis. By forward and reverse signalling Eph-Ephrin interactions regulate diverse biological functions, including neuronal pathfinding, formation of tissue boundaries, and remodelling of vascular and ly...

متن کامل

A fiber modified adenovirus vector that targets to the EphrinA2 receptor reveals enhanced gene transfer to ex vivo pancreatic cancer.

Pancreatic cancer is an aggressive malignancy with a dismal prognosis. To improve treatment options new treatments, such as adenoviral (Ad) gene therapy are necessary. However, low expression of the coxsackie and adenovirus receptor (CAR) in pancreatic cancer cells (PC) limits the therapeutic efficacy of these vectors. The aim of this study was to improve transduction of PC by recombinant adeno...

متن کامل

Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior.

EphA2 is a transmembrane receptor tyrosine kinase that is up-regulated on many aggressive carcinoma cells. Despite its overexpression, the EphA2 on malignant cells fails to bind its ligand, ephrinA1, which is anchored to the membrane of adjacent cells. Unlike other receptor kinases, EphA2 demonstrates kinase activity that is independent of ligand binding. However, ligand binding causes EphA2 to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 49  شماره 

صفحات  -

تاریخ انتشار 2002